为什么说,CAP是分布式理论的基础?

IT科技类资讯2025-11-05 06:10:325138

分布式系统非常关注三个指标:

数据一致性; 系统可用性; 节点连通性与扩展性;

这三个指标的为什么说关系如何,今天来聊一聊分布式理论的布式基础CAP。

什么是理论数据一致性?

数据“强一致性”,是为什么说希望系统只读到最新写入的数据,例如:通过单点串行化的布式方式,就能够达到这个效果。理论

关于session一致性,为什么说DB主从一致性,布式DB双主一致性,理论DB与Cache一致性,为什么说数据冗余一致性,布式消息时序一致性,理论分布式事务一致性,为什么说库存扣减一致性,布式都存在类似的理论一致性问题。

什么可用性?

如果系统每运行100个时间单位,会有1个时间单位无法提供服务,则说系统的可用性是99%。

可用性和可靠性是比较容易搞混的两个指标,以一台取款机为例:

正确的输入,能够取到正确的钱,亿华云计算表示系统可靠; 取款机7*24小时提供服务,表示系统可用;

保证系统高可用的方法是:

冗余; 故障自动转移;

什么是连通性与扩展性?

分布式系统,往往有多个节点,每个节点之间,都不是完全独立的,需要相互通信,当发生节点无法联通时,数据是否还能保持一致,系统要如何进行容错处理,是需要考虑的。

同时,连通性和扩展性紧密相关,想要加机器扩展性能,必须有良好的连通性。当一个节点脱离系统,系统就出现问题,往往意味着系统是无法扩展的。

什么是CAP定理?

CAP定理,是对上述分布式系统的三个特性,源码下载进行了归纳:

一致性(Consistency); 可用性(Availability); 分区容忍性(Partition Tolerance);

并且,定理指出,在系统实现时,这三者最多兼顾两点。

一致性,可用性,多节点扩展性三者只能取其二,既然加锁已经加上,常见的最佳工程架构实践是什么呢?

互联网,最常见的实践是这样的:

节点连通性,多节点扩展性,连通性异常的处理必须保证,满足P; 一致性C与可用性A一般二选一; 选择一致性C,举例:传统单库水平切分,就是这类选型的典型; 选择可用性A,举例:双主库同步高可用,就是这类选型的典型;

强一致很难怎么办?

单点串行化,虽然能保证“强一致”,但对系统的并发性能,以及高可用有较大影响,互联网的玩法,云服务器更多的是“最终一致性”,短期内未必读到最新的数据,但在一个可接受的时间窗口之后,能够读到最新的数据。

例如:数据库主从同步,从库上的数据,就是一个最终的一致。

总结

CAP可以理解为一致性,可用性,联通与扩展性; CAP三者只能取其二; 最常见的实践是AP+最终一致性;

【本文为专栏作者“58沈剑”原创稿件,转载请联系原作者】

戳这里,看该作者更多好文

本文地址:http://www.bzuk.cn/html/382d33899279.html
版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

全站热门

电脑表格显示格式错误及解决方法(解析电脑表格显示错误的常见问题和解决方案)

一文教你快速了解鸿蒙分布式调度并开发数据库相关应用

使用Python实现HIVE的UDF函数

一个排名调整问题恶心了我整整一天

OPPOR732G全网通手机体验评测(OPPOR732G全网通手机的性能、拍照、续航等方面优势分析)

Python是如何处理垃圾的?

本科作业到Nature子刊:大二学生突破量子计算近20年的纠错码难题

前端 | Vue 3生命周期完整指南

友情链接

滇ICP备2023006006号-33